НЕЙРОКОМПЬЮТЕРЫ - АРХИТЕКТУРА И РЕАЛИЗАЦИЯ


Введение - часть 3


/p>

Следовательно, основные преимущества нейрокомпьютеров связаны с массовым параллелизмом обработки, что обуславливает высокое быстродействие, низким требованиями к стабильности и точности параметров элементарных узлов, устойчивостью к помехам и разрушениям при большой пространственной размерности системы, причём устойчивые и надёжные нейросистемы могут создаваться из низконадёжных элементов, имеющих большой разброс параметров.

В дальнейшем в данном обзоре под нейрокомпьютером будет пониматься любая вычислительная система с MSIMD архитектурой (определение №4). Прежде чем перейти к обзору современных нейровычислителей и их элементной базы, остановимся на классификации архитектур вычислительных систем по Б.М. Когану:

  • Вычислительную систему с одним потоком команд и данных (однопроцессорная ЭВМ - SISD) (рис.1а).
  • Вычислительную систему с общим потоком команд (SIMD - одиночный поток команд и множественный поток данных) (рис.1б).
  • Вычислительную систему множественным потоком команд и одиночным потоком данных (MISD - конвейерная ЭВМ) (рис.1в).
  • Вычислительная система с множественным потоком команд и данных (рис.1г) (MIMD).

Рис.1. Архитектуры вычислительных систем.

Элементарным строительным элементом нейронной сети (НС) является нейрон, который осуществляет взвешенное суммирование поступающих на его вход сигналов. Результат такого суммирования образует промежуточный выходной сигнал, который преобразуется активационной функцией в выходной сигнал нейрона. По аналогии с электронными системами активационную функцию можно считать нелинейной усилительной характеристикой искусственного нейрона, имеющей большой коэффициент усиления для слабых сигналов и c падающим усилением для больших возбуждений. Коэффициент усиления вычисляется как отношение выходного сигнала нейрона к вызвавшему его небольшому приращению взвешенной суммы входных сигналов. Кроме этого для обеспечения увеличения вычислительной мощности многослойными НС, по сравнению с однослойными, необходимо чтобы активационная функция между слоями была нелинейной, т.е.


- Начало -  - Назад -  - Вперед -