НЕЙРОКОМПЬЮТЕРЫ - АРХИТЕКТУРА И РЕАЛИЗАЦИЯ


Часть 1. Элементы нейрологики с позиции аппаратной реализации


Основные нейросетевые парадигмы разработаны несколько десятилетий назад, по их исследованию опубликовано огромное число работ с обзорами которым можно познакомиться в [1-4]. Мы лишь, для лучшего понимания в дальнейшей архитектурно-схемотехнический решений нейровычислительных систем остановимся на наиболее важных элементах нейрологики с позиции аппаратной реализации.

Одним из основных достоинств нейровычислителя является то, что его основу составляют относительно простые, чаще всего - однотипные, элементы (ячейки), имитирующие работу нейронов мозга - "нейроны". Каждый нейрон характеризуется своим текущим состоянием по аналогии с нервными клетками головного мозга, которые могут быть возбуждены или заторможены. Он обладает группой синапсов - однонаправленных входных связей, соединенных с выходами других нейронов, а также имеет аксон - выходную связь данного нейрона, с которой сигнал (возбуждения или торможения) поступает на синапсы следующих нейронов. Общий вид нейрона приведен на рисунке 2.

Рис.2. Общий вид нейрона.

Каждый синапс характеризуется величиной синаптической связи или ее весом wi, который по физическому смыслу эквивалентен электрической проводимости. Текущее состояние нейрона определяется, как взвешенная сумма его входов:

Выход нейрона есть функция его состояния: y = f(s) (2), которая называется активационной и может иметь различный вид (некоторые из типовых активационных функций представлены на рисунке 3). Одной из наиболее распространенных - является нелинейная функция с насыщением, так называемая логистическая функция или сигмоид (т.е. функция S-образного вида):

Рис2.5

а) единичная пороговая функция;

б) линейный порог (гистерезис);

в) сигмоид - гиперболический тангенс;

г) логистический сигмоид.

При уменьшении сигмоид становится более пологим, в пределе при =0 вырождаясь в горизонтальную линию на уровне 0.5, при увеличении сигмоид приближается по внешнему виду к функции единичного скачка с порогом T в точке x=0. Из выражения для сигмоида очевидно, что выходное значение нейрона лежит в диапазоне [0,1].


- Начало -  - Назад -  - Вперед -